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Abstract. Model-based approaches to tracking of articulated objects,
such as a human, have a high computational overhead due to the high di-
mensionality of the state space. In this paper, we present an approach to
human motion capture (HMC) that mitigates the problem by perform-
ing a probabilistic decomposition of the state space. We achieve this by
defining a conditional likelihood for each limb in the articulated human
model as opposed to an overall likelihood. The conditional likelihoods are
fused by making certain conditional independence assumptions inherent
in the human body. Furthermore, we extend the popular stochastic search
methods for HMC to make use of the decomposition. We demonstrate
with Human Eva I and II datasets that our approach is capable of track-
ing more accurately than the state-of-the-art systems using only a small
fraction of the computational resources.

1 Introduction

Model-based methods for human motion capture (HMC) [1–6] rely on particle
based systems that either perform global optimization within a restricted search
volume or use a sequential Monte Carlo (SMC) style tracker. These are designed
to be general optimization and tracking methods which are applied to HMC.
However, articulated objects such as a human body, have a number of conditional
independence properties. For example, one could assume that the head and the
leg poses are conditionally independent given the pose of the torso. Existing
particle based systems for HMC do not make use of these properties, i.e., they
are incapable of extracting a good leg pose from a sample which has poor overall
likelihood due to head pose. This is observed in Figure 1a. Due to occlusion,
these independence assumptions may not hold in a single view. However, most
state of the art systems for HMC operate in a multi-view scenario, where these
assumptions can be made to improve the tracking performance.

Partitioned sampling [7] is a technique that enables articulated object track-
ers to decompose the high dimensional state space. It has shown a 50% reduction
in the tracking overhead for an articulated hand [7] with fewer (4) degrees of
freedom than a human (25-50). However, annealing based methods such as An-
nealed Particle Filter (APF [1]), Interacting Simulating Annealing (ISA [3]) have
been claimed to perform better than partitioned sampling for high dimensional
spaces such as those used in HMC. Though recent studies [4] indicate parti-
tioned sampling to be a promising alternative for HMC, state of the art systems
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(a) (b)

Fig. 1: Part a) shows two poor overall poses which have a good fit for specific
limbs, and b) shows a new pose extracted from the two poor poses that has an
overall good fit.

[3, 4] do not make use of such a hierarchical decomposition, due to the lack of a
systematic framework.

In this paper, we present a systematic approach to perform hierarchical de-
composition. Though we apply our framework to HMC here, our method is a
very general one, and it can be applied to other articulated objects such as a
human hand or quadrupeds as well as other optimization problems that can be
factorized. Our novel contributions are as follows. We describe a probabilistic
framework to decompose the high dimensional state space of the HMC systems
into subspaces of smaller dimension. The decomposition enables partitioned sam-
pling type algorithms for HMC. We extend stochastic search methods (APF,
ISA) to make use of the decomposition.

We validate the proposed method using the data from the Human Eva I and
II datasets. Our results show that by decomposing the state space, we are able
to capture complex human activity more accurately, using only a small fraction
of the computational resources as the state-of-the-art systems [3, 6, 8].

2 Previous Work

There is a large body of research on HMC. Approaches such as [9, 10] use local
optimization for tracking. Despite showing promising results, local optimization
based techniques are known to get stuck in incorrect hypotheses [8]. Hence these
methods are expected to fail when the model is not exact, or if the image fea-
tures are uncertain. Even if these assumptions do hold, these methods could still
benefit from a decomposed search framework such as the one we propose here.
Discriminative methods [11, 12] that learn a mapping function between the im-
age features and the human pose are known to require extensive training, and
are expected to be sensitive to the appearance of the subject. Moreover, the
generalization of these methods to novel poses not part of the training database
is unclear.
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More recently, HMC using pictorial structures [13] and belief propagation
[14], which loosely assemble human parts to a plausible pose, have been pro-
posed. However, these methods cannot ensure anatomically correct reconstruc-
tion of the human motion. Furthermore, they are confined to crude models of
the subject and cannot be extended to more general surface meshes [2, 3]. Our
method enforces certain conditional independence assumptions similar to [14].
However, our approach is very different from [14] since we enforce hard rather
than soft constraints between limbs, i.e., distances between connected limbs can-
not change in our method. Furthermore, since the conditional independencies are
induced by the kinematic model, our method has a different set of conditional
independencies than model free methods such as [14].

Deutscher et al. [1] formulate HMC as a global optimization problem, and
use randomized search algorithms that locate the global optimum in a restricted
volume of the state space. Furthermore, they extend [1] their work using in-
spiration from genetic algorithms and perform crossover when generating new
samples. Our method could be considered as an extension of this, where we per-
form crossover based on the fit of the individual parts. Gall et al. [3] describe
a multi pass solution that perform a crude tracking with global optimization,
which is later refined by a smoothing filter and local optimization. Sidenbladh et
al. [15] describe a complete generative framework to model based HMC using the
sequential Monte Carlo tracker. Our approach is compatible with these methods
which are referred to as generative methods or analysis by synthesis framework
in the literature. However, none of these methods have proposed a systematic
framework to decompose the state space, which is the main focus of this paper.

In [6], authors describe a framework for the HMC of multiple subjects in
parallel. This can be considered as a specific instance of our method where the
likelihood for the two subjects are assumed to be independent. We show that by
exploiting the conditional independence structure, the HMC of a single subject
can be made more efficient. As a result, the general framework we present here
can be used for the HMC of multiple subjects.

3 State space decomposition

3.1 Overview

Recent model-based methods for HMC [1–6], approach the problem as a dynamic
maximum likelihood estimation of a high dimensional state space X . In this pa-
per, we make certain conditional independence assumptions about the likelihood,
i.e., we assume the likelihood could be factorized into subspaces Xi, i ∈ {1, . . . , L}
of much smaller dimensions. The factorization is achieved by defining conditional
likelihoods for each part rather than an overall likelihood as commonly done in
model-based methods [3, 4]. The conditional likelihoods are composed of a model
to observation and an observation to model matching cost. However, since the
conditional likelihoods are defined for each part, we decompose the observation
probabilistically in order to define the conditional likelihoods. Using our condi-
tional likelihoods, pose inference can be achieved using well known algorithms
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Fig. 2: The graphical model shows the conditional independence assumptions
induced by the kinematic model.

such as non-parametric belief propagation (NBP) [14]. However, this would re-
sult in a Bayesian particle based system that approximates the posterior with
a set of samples. Since most Bayesian methods such as [7, 15] require a very
high number of samples for HMC, we extend the stochastic search methods for
inference instead of Bayesian techniques. In the rest of this section, we describe
our method in detail.

3.2 Marginal Likelihood

We achieve decomposition by making a number of conditional independence
assumptions. The assumptions are induced by the kinematic model used for
tracking. Figure 2 shows a directed graphical model representing the conditional
independence assumptions made. The decomposed subspaces Xi are simply the
degrees of freedom (DOF) for the rigid objects represented by the nodes in Figure
2. In order to illustrate model decomposition, let us consider the example of the
lower left arm. After marginalizing the unrelated variables, the likelihood for the
lower left arm and its parents is expressed as

P (lla, ula, tor) = P (lla|ula, tor)P (ula|tor)P (tor) (1)

where lla, ula and tor represent the pose parameters corresponding to the lower
left arm, upper left arm, and the torso respectively. In order to obtain the like-
lihood of lla one can marginalize the above equation as below

P (lla = l) =

∫
P (lla = l, ula = u, tor = t) du dt (2)

The marginalization can be done numerically by a Monte Carlo approximation
of the conditional likelihoods.

3.3 Conditional Likelihood

We use a variant of Oriented Chamfer Matching [16–18] in this work. However,
the techniques that we discuss can be applied with other image features such as
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(a) P(x|l=head, c) (b) Projection Π(X) (c) Observation O

Fig. 3: The probability of the edge fragment given the part, P (x|l, c), for head
is shown in (a) (high probability in green and low probability in black). The
edge fragments for the projection Π(X) and the observation O, color coded
according to the most probable label assignment P (l|x, c) are shown in (b) and
(c) respectively.

those used in [3, 4, 6]. Let P be the space R2 × [0, π] representing oriented edge
fragments. Let Oc = {oi ∈ P} and Πc(X) = {πi ∈ P} represent the respective
sets of observation and synthesized edge fragments for a specific camera c. The
oriented chamfer distance between the two for the camera c is defined as

ψc(Oc, X) =
1

|Oc|
∑
oi∈Oc

d(oi, Π
c(X))

+
1

|Πc(X)|
∑

πi∈Πc(X)

d(πi, O
c)

(3)

where d : P × PN → R, is a distance measure between an element in P and
a set {P}, |Oc| and |Πc(X)| are the cardinalities of the sets Oc and Πc(X)
respectively. It can be observed that ψc is composed of a model to observation
and an observation to model matching term. The overall distance measure ψ is
defined as the mean of the measure ψc from all cameras. The measure ψ provides
a scalar cost that measures the overall match between the observation and the
projection. In order to decompose it, we introduce a label l, which is distributed
according to the L valued categorical distribution, formally, l ∼ Cat(L, p). The
probability of the label indicates the degree of membership of an edge fragment
to the individual rigid parts. Let us assume that the probability of the part given
an edge fragment x in a camera c, P (l|x, c), is known (described in section 3.4).
Assuming an uniform prior over the edge fragments given the camera, and using
Bayes rule, one can obtain P (x|l, c).

P (x|l, c) =
P (l|x, c)∑
x P (l|x, c)

(4)

Since the possible values x can take is dependent upon c, here we assume the
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Fig. 4: The probability of the camera given the part, P (c|l), for the lower left leg
and the upper left arm is shown. The edge fragments (in color) which are most
likely to be from the upper left arm and the lower left leg are shown in green
and cyan respectively.

parameters for c and x are consistent, i.e., the probability P (x, c) is non zero.
Figure 3a shows the probability of the observed edge fragments for the head. In
addition, assuming an uniform prior over the cameras and using Bayes rule, one
can obtain the probability of the camera given the part as below

P (c|l) =

∑
x P (l|x, c)∑
x,c P (l|x, c)

(5)

P (c|l) measures which camera is more likely to view a body part, and hence is
more likely to help infer that part. Figure 4 shows P (c|l) for the lower left leg
and the upper left arm. It can be observed that for the lower left leg, which is
equally visible in all three cameras, the measure P (c|l) is equally distributed.
Whereas, for the upper left arm which is nearly occluded in the third and second
camera, the measure P (c|l) is small for the third and second camera.

Using these probabilities the cost for a part l and camera c is expressed as

φcl (O
c, X) = EP (x=oi|l,c)[d(oi, Π

c(X))] + EP (x=πi|l,c)[d(πi, O
c)]
]

(6)

where the first and the second term correspond to the observation to model
and the model to observation matching cost respectively. Expressed differently,
rather than summing the distance contribution from all the edge fragments as
done in [16–18], we take a weighted sum with the weights estimated using Eq.
4. The total cost for the part l is expressed as the expectation of φcl with respect
to P (c|l). Formally,

φl(X) = EP (c|l)[φ
c
l (O

c, X)] (7)

Modeling the likelihood to consider the visibility of the part is a novel aspect
of our framework. Model-based methods in the current literature, take an av-
erage over all cameras to obtain the overall likelihood, which is equivalent to
considering P (c|l) to be uniform.
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The conditional likelihood of a part given its parents is expressed as the
cost for the respective part. Intuitively, treating the cost as conditional likeli-
hood makes sense, since the cost for a part is conditioned on the value of the
parameters for the parent links in the kinematic model. Formally,

− logP (Xj |parents(Xj)) = φl(X) + C (8)

where Xj is a vector of parameters associated with the link j, parents(Xj) is a
vector of parameters for the ancestors of the link j (in the graphical model), and
C is the normalization constant. For example, if j is considered to be the lla in
Figure 2, then the vector Xj would be the parameter for the 1D joint associated
with the lla, and the vector parents(Xj) would comprise of the parameters for
the 9 DOF for the torso (6) and the ula (3).

The formulation of the conditional likelihood in Eq. (8) is only an approxi-
mation due to occlusion. However, this is not a bad approximation since we take
expectation over multiple cameras. Furthermore, since P (c|l) is not uniform, the
cost φl for the part l is more influenced by the view in which the part is not
occluded.

3.4 Edge fragment prior

We estimate the prior probabilities for the observation edge fragments using the
prior state estimate. A similar decomposition is performed in [6]. However, in
our work the observation is a set of oriented edge fragments, whereas in [6] it is
a silhouette. Let X̄ be the prior estimate of the state. The edge fragments cor-
responding to the different parts can be separated by analyzing the part labels
during the synthesis. Let Πc

l (X̄) represent a set of synthesized edge fragments
corresponding to limb l and camera c. Let Πc(X̄) represent the complete set of
synthesized edge fragments for camera c. The label probability for the observa-
tion edge fragment oi is formally expressed as

logP (l|oi, c) = C − 1

T


∑

o∈Oc, p∈Πc(X̄)

dP(o,p)
|Oc||Πc(X̄)| , if Πc

l (X̄) = ∅

d(oi, Π
c
l (X̄)), otherwise

(9)

where T is a constant used to control the uncertainty and C is the normalization
constant. The set Πc

l (X̄) is empty when the part l is occluded in the camera c.
For such an occluded part, we define the probability to be a low nonzero value.
Since setting a constant value can make it sensitive to the distance measure being
used, we define it to be the mean distance between the set Oc and Πc(X̄). The
function dP is a distance metric between oriented edge fragments [16], which is
typically a convex combination of the Euclidean metric and orientation distance.

The constant T has a significant impact on the edge prior. As T approaches
∞, the edge fragments become equally likely to be from any part and as T ap-
proaches 0, the edge fragments are assigned to a single part with high probability.
In general, we observe that reducing T improves the search performance. This is
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expected since as T approaches 0, the edge prior is more informative. Therefore,
the decomposed likelihood is influenced by both the model to observation and
the observation to model matching cost. Whereas when T approaches ∞, as a
result of a close to uniform edge prior, the observation to model matching cost in
the decomposed likelihood is ineffective. However, when the observation is highly
ambiguous, reducing T causes the tracker to get stuck in incorrect hypothesis.
Hence T should be chosen as a trade-off between the two extremes.

The label probabilities for the projected model is defined as the Kronecker
delta, since the part assignment is known with probability 1. Formally,

P (l = j|x = πi, c) = δ(πli − j) (10)

where πli is the label corresponding to the projected model edge fragment πi.
The respective Figures 3b and 3c show the most probable label assignment for
the synthetic output and the observation for a specific camera.

3.5 Inference

We adapted the stochastic search procedures (APF [1], ISA [3]) to make use
of the decomposed likelihoods. In this section, we describe the modifications
we made. Stochastic search methods start with the predicted estimate of the
state for the current frame (obtained using GP regression [3] or simple motion
prediction strategies such as constant velocity or position [1]) and construct a
sequence of layers. Each layer consists of a set of samples, each of which is a tuple
consisting of the pose vector Xj and its respective normalized weight wj . The
index j ∈ {1, . . . , N}, where N is the number of samples used in a layer. Sample
weights wj are obtained by evaluating the annealed likelihoods and normalizing
as below

log qj = −βl ψ(Xj), wj =
qj∑N
k=1 q

k
(11)

where βl is the inverse annealing temperature for the layer chosen dynamically
for each layer [1] or by a predetermined schedule [3]. In each layer, samples
are selected according to their normalized weights. The selected samples are
then perturbed by an adaptive diffusion kernel, and re-weighted to result in a
normalized set of samples. At the end of the last layer, the expected state of the
sample set is considered to be the estimate of the state.

The principal change we made to the procedure is in Eq. (11). The sam-
ple weights in the modified procedure are obtained by evaluating the annealed
marginal likelihoods rather than the overall likelihood. Formally,

log qji = −βl ψi(Xj
i ), wji =

qji∑N
k=1 q

k
i

(12)

where the subscript i indicates that the sample weights are for the decomposed
subspace and ψi is the corresponding negative log marginal likelihood obtained
by numerical marginalization in Eq. (2). Using the decomposed weights, new
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Fig. 5: Quantitative tracking results for Human Eva I dataset. It can be observed
that our method (HD) performs competitively with 200 and 100 particles, and
better than the baseline (B) with 50 particles.

samples are generated by re-sampling different Xj
i s according to their respective

wji s. They are finally combined to produce new samples Xj . This operation is
similar to the crossover performed in [1], where the authors resample individual
scalar values that makeup the state-space vector independently using the sam-
ple weights. However, we perform crossover based on the fit of the individual
parts, i.e., cluster of scalar values (Xj

i s) in the state space vector are resampled

independently using different sample weights (wji ).

4 Experiments and Results

In this section, we first validate the proposed method by comparing it to a
baseline configuration using the Human Eva I dataset. Then, we compare the
proposed method with the state of the art methods used in HMC [3, 4, 6, 8] using
the Human Eva II dataset. For Human Eva I, input from 3 RGB cameras and 2
grayscale cameras was used and for Human Eva II, input from all the 4 cameras
was used for tracking. Similar to [8, 4], we registered a set of markers provided by
the ground truth for the first frame to the model, in order to measure tracking
error. The marker location in subsequent frames were used to measure the error.
For Human Eva II, the online evaluation system [4] was used to estimate the
tracking error. We used the parameters described in [18] for the distance mesaure
on oriented edge fragments.

We used a kinematic model made of 10 rigid links (L) and 25 DOF for
Human Eva I. We used an extended kinematic model, with ankles, for Human
Eva II resulting in 12 rigid links and 27 DOF. We used ISA configured with
the parameters used in [3] as the baseline procedure for our experiments in
the Human Eva I dataset. We used a likelihood based on OCM [16, 17]. In our
experiments, we found that for the torso, the cost ψtorso is poorly constrained.
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Fig. 6: The negative log likelihood (NLL) for the S3 Jogging sequence and the
overall tracking results of all the sequences for the six configurations are shown
in sub-figures (a) and (b) respectively. Mean error is shown by the asterisk, mean
error plus one standard deviation is shown by the bar.

Hence we added the cost corresponding to the parts directly connected to the
torso such as the head, upper arms and the legs to ψtorso, in order perform a
stable inference. Figure 5 shows the time averaged mean error and deviation
(+1σ) of 5 different runs for 12 different sequences in the Human Eva I dataset.
In the figure, the baseline algorithm is referred to as B and the decomposed
search is referred to as HD. The number of samples used per layer is displayed
next to the name of the configuration for both the algorithms.

It can be noticed that the decomposition significantly improves the perfor-
mance for sequences such as S1 Jog, S2 TC, S2 Box, S3 Gestures and S3 Box.
However, for S3 Jog, it can be observed that it performs worse. Furthermore,
it can be observed that tracking error is worse when higher number of samples
are used for tracking. On analysis, we found that when using decomposed search
the model got stuck in incorrect hypotheses. However, the incorrect hypothesis
had a higher likelihood. This is observed in Figure 6a, which shows the ensemble
and time averaged negative log likelihood (NLL) for the S3 Jog sequence. It can
be observed that the decomposed search still has a lower cost, i.e., it performs
the task of search effectively. In general we observed that the decomposed search
had a very wide effective search volume. Consequently, the decomposed tracker
takes a different trajectory in comparison to the baseline version. We believe this
results in marginally higher tracking error in sequences such as the S1 Gestures,
S1 Box, and S2 Walk. However, these artifacts are caused by aspects such as
poor model and observation, rather than the search procedure itself. This claim
is further strengthened by the Human Eva II results that we present later which
uses an accurate model and a relatively less noisy observation.

The overall mean error and deviation for all the 12 sequences is shown Figure
6b. It can be noticed from the average performance, that both the mean error
and the deviation are reduced in comparison to the baseline method. In addi-
tion, it can be noticed that the performance of the decomposed search is not
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significantly affected by the reduction in number of samples as opposed to the
baseline method.

(a) [3] (b) HD SA (c) HD S

Fig. 7: Qualitative comparison of the tracked output for the subject S4, frame
580, camera 1. It can be observed that the leg pose estimated by our method is
better than those reported in [3].

We compare our results with [3] for Human Eva II, since studies such as [6, 8]
use the implementation of [3]. Furthermore, the study in [4] uses an approximate
model and hence it results in much higher tracking error than [3]. Rather than
implementing the method in [3] ourselves, we compare our approach to the L1
results reported in [3], which is equivalent to our search procedure. We used the
surface mesh provided with the Human Eva II dataset for tracking. Similar to [3],
we reduced the mesh to have 4000 triangles to have an acceptable computational
load.

A high speed approximate method using KD trees was used to synthesize
oriented edge fragments from the surface mesh. Figure 3b shows the synthesized
edge fragments, which can be observed to contain a few incorrect occluded edge
fragments. We obtained the probability in Eq. (10) from the skinning parame-
ters [10] of the vertex. The distance dP was robustified with the Geman-McClure
function in order make the objective robust to outliers. Details of the implemen-
tation such as the parameters used can be obtained from the source code supplied
with the paper.

The decomposed search procedure was configured to use 8 layers and 70 sam-
ples per layer. The annealing schedule parameter α for the decomposed search
was set to 0.2 and the adaptive diffusion parameter γ was set to 0.4 [3]. The
parameter T described in Section 3.4 was set to 15. We used a constant position
model [1] for prediction and a simple silhouette extraction method. The obser-
vation set Oc included oriented edge fragments from the silhouette and gray
image in the foreground region. Table 1 summarizes the tracking results for the
two sequences compared, where our method is referred to as HD SA (since it
uses silhouette and appearance). It can be observed that our procedure performs
better than [3] on most slots.



12 Prabhu Kaliamoorthi, and Ramakrishna Kakarala

If the appearance of the subject is highly textured, the noise can be signif-
icantly higher than methods such as oriented chamfer matching can handle. In
such a scenario the silhouette alone is the most reliable image feature. Hence we
ran the above procedure with the observation set Oc containing oriented edge
fragments from the silhouette alone. The results for this test are summarized in
Table 1 as HD S (since it uses only silhouette). It can be observed that even
without using appearance related features, our procedure results in comparable
tracking performance as [3]. We provide the baseline results using ISA and OCM
with the parameters used in [3], as B SA in the table. It can be observed that
the proposed method HD SA is significantly better than the baseline.

Figures 7 shows the tracked result superimposed on the observation from
the S4 sequence. It can be observed that the leg pose estimated by our method
is slightly better than that in [3]. Figure 8 shows the tracked result for the S2
and S4 sequences from the Human Eva II dataset. Videos of the tracked and
smoothed results, as well as the source code used to generate them, are available
online [19].

S2 S4

Frames 1-350 1-700 1-1202 2-350 2-700 2-1258

Absolute [3] 41.5 ± 8.0 45.0 ± 12.9 43.8 ± 10.7 34.6 ± 4.6 38.5 ± 6.9 38.1 ± 5.8

µ ± σ HD SA 37.0 ± 6.9 41.7 ± 9.1 42.4 ± 9.6 31.2 ± 5.4 34.8 ± 6.4 36.3 ± 5.7

(mm) HD S 39.4 ± 7.6 44.6 ± 12.6 46.6 ± 12.9 31.6 ± 5.1 35.3 ± 6.1 37.1 ± 6.2

B SA 39.2 ± 6.8 44.7 ± 9.8 44.2 ± 9.2 32.5 ± 5.9 36.7 ± 7.5 40.7 ± 9.9

Relative [3] 45.8 ± 9.0 48.4 ± 13.7 46.6 ± 11.4 43.9 ± 8.2 47.0 ± 10.6 45.3 ± 9.1

µ ± σ HD SA 41.4 ± 9.0 43.4 ± 8.9 45.2 ± 10.1 32.0 ± 5.9 36.2 ± 7.6 38.2 ± 7.4

(mm) HD S 44.8 ± 10.3 47.9 ± 13.1 50.2 ± 14.3 32.4 ± 5.7 37.0 ± 7.3 39.0 ± 7.9

B SA 45.0 ± 9.9 48.6 ± 10.7 48.4 ± 10.2 32.7 ± 6.5 38.3 ± 9 43.4 ± 13.5

Table 1: Our tracking results for the Human Eva II dataset are presented next
to those reported in [3] for the subjects S2 and S4. The absolute and the relative
error were obtained using the online evaluation system [4]. Best result in bold.

Method Samples Computation time per frame

[3, 6, 8] 3750 76 sec
ours 560 6 sec

Table 2: Number of samples used and the computation time on a standard PC.
It can be observed that our method uses less than one-sixth of the number of
samples used in [3].
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Fig. 8: Tracking results for S2 and S4 sequences from Human Eva II. Odd rows
show the model output superimposed on the input from the camera, even rows
show the 3d model.

The decomposition procedure we introduce in this paper marginally adds to
the per sample overhead, but we found that this is insignificant in comparison
to the rest of the processing. Since computational overhead to HMC is directly
related to the number of samples used [4], it can be significantly reduced by using
our method. The number of samples used for tracking and the computation time
on a standard PC for the Human Eva II dataset is shown in Table 2. It can be
observed from the table that the proposed method uses less than a sixth of the
samples used in [3]. The computation time of our method is significantly lower
both due to the decomposed search method which requires significantly lower
number of samples and the OCM based likelihood, which can be realized at high
speeds. Furthermore, the implementation in [3, 6, 8] uses a GPU based rendering.
We did not use GPU acceleration in any form. We believe that by using a GPU
based implementation of our method, HMC with the accuracy achieved in [3, 6,
8] would be possible at few frames per second.
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5 Conclusion and Future Work

In this paper, we describe a probabilistic framework to decompose the high
dimensional state space of the human motion capture system. We show that by
defining conditional likelihood for each limb rather than an overall likelihood for
the human model, a number of conditional independence assumptions can be
made that enable the decomposition of the state space. We extend the state-
of-the-art search method for HMC to make use of the decomposed subspaces.
We demonstrate using the Human Eva I and II datasets that the decomposition
framework significantly improves the tracking performance per sample, enabling
the search technique to reach the tracking performance reported in the state
of the art systems using only a fraction of the computational resources. In this
work, we apply the decomposed search for the HMC of a single subject. In the
future, we hope to apply our framework to multiple interacting subjects such as
in [6], and for articulated hand tracking.
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